Importing a class from JS
Just like with functions after we've started exporting we'll also want to
import! Now that we've exported a class
to JS we'll want to also be able to
import classes in Rust as well to invoke methods and such. Since JS classes are
in general just JS objects the bindings here will look pretty similar to the JS
object bindings describe above.
As usual though, let's dive into an example!
#![allow(unused)] fn main() { #[wasm_bindgen(module = "./bar")] extern "C" { type Bar; #[wasm_bindgen(constructor)] fn new(arg: i32) -> Bar; #[wasm_bindgen(js_namespace = Bar)] fn another_function() -> i32; #[wasm_bindgen(method)] fn get(this: &Bar) -> i32; #[wasm_bindgen(method)] fn set(this: &Bar, val: i32); #[wasm_bindgen(method, getter)] fn property(this: &Bar) -> i32; #[wasm_bindgen(method, setter)] fn set_property(this: &Bar, val: i32); } fn run() { let bar = Bar::new(Bar::another_function()); let x = bar.get(); bar.set(x + 3); bar.set_property(bar.property() + 6); } }
Unlike our previous imports, this one's a bit more chatty! Remember that one of
the goals of wasm-bindgen
is to use native Rust syntax wherever possible, so
this is mostly intended to use the #[wasm_bindgen]
attribute to interpret
what's written down in Rust. Now there's a few attribute annotations here, so
let's go through one-by-one:
#[wasm_bindgen(module = "./bar")]
- seen before with imports this is declare where all the subsequent functionality is imported from. For example theBar
type is going to be imported from the./bar
module.type Bar
- this is a declaration of JS class as a new type in Rust. This means that a new typeBar
is generated which is "opaque" but is represented as internally containing aJsValue
. We'll see more on this later.#[wasm_bindgen(constructor)]
- this indicates that the binding's name isn't actually used in JS but rather translates tonew Bar()
. The return value of this function must be a bare type, likeBar
.#[wasm_bindgen(js_namespace = Bar)]
- this attribute indicates that the function declaration is namespaced through theBar
class in JS.#[wasm_bindgen(static_method_of = SomeJsClass)]
- this attribute is similar tojs_namespace
, but instead of producing a free function, produces a static method ofSomeJsClass
.#[wasm_bindgen(method)]
- and finally, this attribute indicates that a method call is going to happen. The first argument must be a JS struct, likeBar
, and the call in JS looks likeBar.prototype.set.call(...)
.
With all that in mind, let's take a look at the JS generated.
import * as wasm from './foo_bg';
import { Bar } from './bar';
// other support functions omitted...
export function __wbg_s_Bar_new() {
return addHeapObject(new Bar());
}
const another_function_shim = Bar.another_function;
export function __wbg_s_Bar_another_function() {
return another_function_shim();
}
const get_shim = Bar.prototype.get;
export function __wbg_s_Bar_get(ptr) {
return shim.call(getObject(ptr));
}
const set_shim = Bar.prototype.set;
export function __wbg_s_Bar_set(ptr, arg0) {
set_shim.call(getObject(ptr), arg0)
}
const property_shim = Object.getOwnPropertyDescriptor(Bar.prototype, 'property').get;
export function __wbg_s_Bar_property(ptr) {
return property_shim.call(getObject(ptr));
}
const set_property_shim = Object.getOwnPropertyDescriptor(Bar.prototype, 'property').set;
export function __wbg_s_Bar_set_property(ptr, arg0) {
set_property_shim.call(getObject(ptr), arg0)
}
Like when importing functions from JS we can see a bunch of shims are generated
for all the relevant functions. The new
static function has the
#[wasm_bindgen(constructor)]
attribute which means that instead of any
particular method it should actually invoke the new
constructor instead (as
we see here). The static function another_function
, however, is dispatched as
Bar.another_function
.
The get
and set
functions are methods so they go through Bar.prototype
,
and otherwise their first argument is implicitly the JS object itself which is
loaded through getObject
like we saw earlier.
Some real meat starts to show up though on the Rust side of things, so let's take a look:
#![allow(unused)] fn main() { pub struct Bar { obj: JsValue, } impl Bar { fn new() -> Bar { extern "C" { fn __wbg_s_Bar_new() -> u32; } unsafe { let ret = __wbg_s_Bar_new(); Bar { obj: JsValue::__from_idx(ret) } } } fn another_function() -> i32 { extern "C" { fn __wbg_s_Bar_another_function() -> i32; } unsafe { __wbg_s_Bar_another_function() } } fn get(&self) -> i32 { extern "C" { fn __wbg_s_Bar_get(ptr: u32) -> i32; } unsafe { let ptr = self.obj.__get_idx(); let ret = __wbg_s_Bar_get(ptr); return ret } } fn set(&self, val: i32) { extern "C" { fn __wbg_s_Bar_set(ptr: u32, val: i32); } unsafe { let ptr = self.obj.__get_idx(); __wbg_s_Bar_set(ptr, val); } } fn property(&self) -> i32 { extern "C" { fn __wbg_s_Bar_property(ptr: u32) -> i32; } unsafe { let ptr = self.obj.__get_idx(); let ret = __wbg_s_Bar_property(ptr); return ret } } fn set_property(&self, val: i32) { extern "C" { fn __wbg_s_Bar_set_property(ptr: u32, val: i32); } unsafe { let ptr = self.obj.__get_idx(); __wbg_s_Bar_set_property(ptr, val); } } } impl WasmBoundary for Bar { // ... } impl ToRefWasmBoundary for Bar { // ... } }
In Rust we're seeing that a new type, Bar
, is generated for this import of a
class. The type Bar
internally contains a JsValue
as an instance of Bar
is meant to represent a JS object stored in our module's stack/slab. This then
works mostly the same way that we saw JS objects work in the beginning.
When calling Bar::new
we'll get an index back which is wrapped up in Bar
(which is itself just a u32
in memory when stripped down). Each function then
passes the index as the first argument and otherwise forwards everything along
in Rust.