Julia Set
View full source code or view the compiled example online
While not showing off a lot of web_sys
API surface area, this example shows a
neat fractal that you can make!
index.js
A small bit of glue is added for this example
import('./pkg')
.then(wasm => {
const canvas = document.getElementById('drawing');
const ctx = canvas.getContext('2d');
const realInput = document.getElementById('real');
const imaginaryInput = document.getElementById('imaginary');
const renderBtn = document.getElementById('render');
renderBtn.addEventListener('click', () => {
const real = parseFloat(realInput.value) || 0;
const imaginary = parseFloat(imaginaryInput.value) || 0;
wasm.draw(ctx, 600, 600, real, imaginary);
});
wasm.draw(ctx, 600, 600, -0.15, 0.65);
})
.catch(console.error);
src/lib.rs
The bulk of the logic is in the generation of the fractal
#![allow(unused_variables)]
fn main() {
use std::ops::Add;
use wasm_bindgen::prelude::*;
use wasm_bindgen::Clamped;
use web_sys::{CanvasRenderingContext2d, ImageData};
#[wasm_bindgen]
pub fn draw(
ctx: &CanvasRenderingContext2d,
width: u32,
height: u32,
real: f64,
imaginary: f64,
) -> Result<(), JsValue> {
// The real workhorse of this algorithm, generating pixel data
let c = Complex { real, imaginary };
let data = get_julia_set(width, height, c);
let data = ImageData::new_with_u8_clamped_array_and_sh(Clamped(&data), width, height)?;
ctx.put_image_data(&data, 0.0, 0.0)
}
fn get_julia_set(width: u32, height: u32, c: Complex) -> Vec<u8> {
let mut data = Vec::new();
let param_i = 1.5;
let param_r = 1.5;
let scale = 0.005;
for x in 0..width {
for y in 0..height {
let z = Complex {
real: y as f64 * scale - param_r,
imaginary: x as f64 * scale - param_i,
};
let iter_index = get_iter_index(z, c);
data.push((iter_index / 4) as u8);
data.push((iter_index / 2) as u8);
data.push(iter_index as u8);
data.push(255);
}
}
data
}
fn get_iter_index(z: Complex, c: Complex) -> u32 {
let mut iter_index: u32 = 0;
let mut z = z;
while iter_index < 900 {
if z.norm() > 2.0 {
break;
}
z = z.square() + c;
iter_index += 1;
}
iter_index
}
#[derive(Clone, Copy, Debug)]
struct Complex {
real: f64,
imaginary: f64,
}
impl Complex {
fn square(self) -> Complex {
let real = (self.real * self.real) - (self.imaginary * self.imaginary);
let imaginary = 2.0 * self.real * self.imaginary;
Complex { real, imaginary }
}
fn norm(&self) -> f64 {
(self.real * self.real) + (self.imaginary * self.imaginary)
}
}
impl Add<Complex> for Complex {
type Output = Complex;
fn add(self, rhs: Complex) -> Complex {
Complex {
real: self.real + rhs.real,
imaginary: self.imaginary + rhs.imaginary,
}
}
}
}